Structure of flat covers of injective modules
نویسندگان
چکیده
منابع مشابه
Injective Envelopes and (Gorenstein) Flat Covers
In terms of the duality property of injective preenvelopes and flat precovers, we get an equivalent characterization of left Noetherian rings. For a left and right Noetherian ring R, we prove that the flat dimension of the injective envelope of any (Gorenstein) flat left R-module is at most the flat dimension of the injective envelope of RR. Then we get that the injective envelope of RR is (Gor...
متن کاملGorenstein flat and Gorenstein injective dimensions of simple modules
Let R be a right GF-closed ring with finite left and right Gorenstein global dimension. We prove that if I is an ideal of R such that R/I is a semi-simple ring, then the Gorensntein flat dimensnion of R/I as a right R-module and the Gorensntein injective dimensnnion of R/I as a left R-module are identical. In particular, we show that for a simple module S over a commutative Gorensntein ring R, ...
متن کاملStrongly Gorenstein projective , injective and flat modules
Let R be a ring and n a fixed positive integer, we investigate the properties of n-strongly Gorenstein projective, injective and flat modules. Using the homological theory , we prove that the tensor product of an n-strongly Gorenstein projective (flat) right R -module and projective (flat) left R-module is also n-strongly Gorenstein projective (flat). Let R be a coherent ring ,we prove that the...
متن کاملGorenstein Projective, Injective and Flat Modules Relative to Semidualizing Modules
In this paper we study some properties of GC -projective, injective and flat modules, where C is a semidualizing module and we discuss some connections between GC -projective, injective and flat modules , and we consider these properties under change of rings such that completions of rings, Morita equivalences and the localizations.
متن کاملGorenstein Flat and Gorenstein Injective Dimensions of Simple Modules
Let R be a right GF -closed ring with finite left and right Gorenstein global dimension. We prove that if I is an ideal of R such that R/I is a semi-simple ring, then the Gorenstein flat dimension of R/I as a right R-module and the Gorenstein injective dimension of R/I as a left R-module are identical. In particular, we show that for a simple module S over a commutative Gorenstein ring R, the G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 2003
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm96-1-9